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ABSTRACT 

C o l l i s i o n  i n t e g r a l s  f o r  the exponent ia l  a t t r a c t i v e  p o t e n t i a l  a r e  

ca l cu la t ed  by accu ra t e  numerical  i n t eg ra t ion .  There a re  some 

unexpected d i f f e rences  from what had been expected by analogy wi th  

inve r se  power a t t r a c t i v e  po ten t i a l s .  Some impl ica t ions  of t hese  

r e s u l t s  f o r  t h e  c a l c u l a t i o n  of high-temperature gas t r a n s p o r t  

p r o p e r t i e s  a r e  discussed.  
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I. INTRODUCTION 

Simple a t t r a c t i v e  o r  r epu l s ive  p o t e n t i a l s  a r e  use fu l  f o r  

c a l c u l a t i o n s  of t he  t r a n s p o r t  p rope r t i e s  of gases ,  e s p e c i a l l y  a t  high 

S ing le  term inve r se  power laws have been a f a v o r i t e  r ep resen ta t ion  

of such p o t e n t i a l s ,  p a r t l y  because the eva lua t ion  of t h e i r  t r a n s p o r t  

c o l l i s i o n  i n t e g r a l s  r e q u i r e s  only a s i n g l e  se t  of quadra tures .  The 

numerical  r e s u l t s  a v a i l a b l e  f o r  inverse  power a t t r a c t i v e  and r epu l s ive  

p o t e n t i a l s  have been summarized and extended by Kihara, Taylor ,  and 

H i r ~ c h f e l d e r . ~  However, it o f t en  happens t h a t  a s i n g l e  term exponent ia l  

g ives  a b e t t e r  r ep resen ta t ion  of the i n t e r a c t i o n  than  does an  inve r se  

power, bu t  the eva lua t ion  of the c o l l i s i o n  i n t e g r a l s  f o r  an  exponent ia l  

p o t e n t i a l  r equ i r e s  a l a r g e  amount of numerical  quadrature .  The 

c o l l i s i o n  i n t e g r a l s  f o r  the repuls ive  exponent ia l  have been accu ra t e ly  

c a l c u l a t e d  by Monchick, bu t  the only r e s u l t s  a v a i l a b l e  f o r  the 4 

a t t r a c t i v e  exponent ia l  a r e  an estimate by Brokaw’ bqsed on a s c a l i n g  

analogy with a t t r a c t i v e  inverse  powers. 

The purpose of t h i s  paper is t o  r e p o r t  the c a l c u l a t i o n  of the 

c o l l i s i o n  i n t e g r a l s  f o r  the exponent ia l  a t t r a c t i v e  p o t e n t i a l  by 

accu ra t e  numerical i n t e g r a t i o n .  Such a c a l c u l a t i o n  i s  now comparatively 

easy  because of the ex is tence  of an e f f i c i e n t  computer program f o r  the 

automatic  c a l c u l a t i o n  of c o l l i s i o n  i n t e g r a l s .  6 
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Comparison of the r e s u l t s  wi th  those f o r  inverse  power a t t r a c t i v e  p o t e n t i a l s  

and w i t h  Brokawls estimates shows that the c o l l i s i o n  i n t e g r a l s  f o r  

v i s c o s i t y  c o r r e l a t e  well (i -e  .,Brokaw's e s t ima tes  are reasonably accu ra t e )  

but t h a t  the  c o i i i s i o n  i n t e g r a i s  f o r  d i f f u s i o n  do not  c o r r e i a t e  weli and 

i n  f a c t  sksr~ a rather d i f f e r e n t  temperature dependence. Some impl ica t ions  

of these r e s u l t s  f o r  the c a l c u l a t i o n  of high-temperature gas t r a n s p o r t  

p r o p e r t i e s  a r e  discussed.  

11. NUMERICAL CALCULATIONS 

It is  first necessary t o  decide on a condi t ion  a t  the o r i g i n  f o r  

an a t t r a c t i v e  p o t e n t i a l ,  inasmuch a s  d i f f e r e n t  assumptions can l e a d  t o  

q u i t e  d i f f e r e n t  c o l l i s i o n  i n t e g r a l s  .3 We chose t h e  r epu l s ive  core 

condi t ion ,  i n  which t h e  p o t e n t i a l  has a small r epu l s ive  core  a t  the 

o r i g i n  t o  d e f l e c t  outwards any t r a j e c t o r i e s  of r e l a t i v e  motion tha t  reach  

the o r i g i n ,  s i n c e  th i s  i s  the most r e a l i s t i c  model i n  the  problems of 

phys ica l  i n t e r e s t .  I n  t h e  l i m i t  of a core  of i n f i n i t e s i m a l  s i z e ,  the 

exac t  na tu re  of the r epu l s ion  is expected t o  be unimportant and can be 

chosen f o r  mathematical convenience. The usual  choice of a rigid-sphere 

core  was imprac t ica l  because of the d i s c o n t i n u i t y  involved; a s h o r t -  

ranged exponent ia l  was t h e r e f o r e  used, and the c o l l i s i o n  i n t e g r a l s  f o r  the 

a t t r a c t i v e  exponent ia l  were ca l cu la t ed  a s  the low-temperature l i m i t s  of 

the Morse p o t e n t i a l ,  

where E i s  the depth of the po ten t i a l  well, re i ts  p o s i t i o n , d t h e  
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. 

-- 

s e p a r a t i o n  f o r  whichy(U) = 0, and C i s  a parameter which g ives  a 

measure of the width of t h e  well ,  r e l a t e d  t o  r a n d u b b y  the r e l a t i o n  
8 

C [ ( re /u)  - 11 = I n  2. If  w e  write the a t t r a c t i v e  exponent ia l  i n  the 

form 

y ( r )  = - yo exp (-r/p) , 
t hen  yG = 2~ exp (Cre/r) and p=C/C. 

I 

The conventional def i n i t i o n 7  of the reduced c o l l i s i o n  i n t e g r a l s  

de,"'* t o  be equal  t o  u n i t y  f o r  r i g i d  spheres  of diameter 6, and t o  
* 

be func t ions  of t he  reduced temperature T = kT/E, a r e  inconvenient 

f o r  exponent ia l  p o t e n t i a l s ,  4,5 and we have adopted the d e f i n i t i o n s  5 

a = ln(yo/kT) = C - In (T*/4). 

The procedure was t o  p ick  a value of C and then  e v a l u a t e  a (49s)* by the 

previous ly  descr ibed computer program 6 a t  success ive ly  lower values  of 

T* u n t i l  t h e  r e s u l t s  appeared t o  be independent of the r epu l s ive  core.  A s  

a check t h e  process  was repeated wi th  a new value of C.  

a l l  these r e s u l t s  t o  a p l o t  of J C a y s )  vs. a ,  we f i n d  a fami ly  of curves,  

one f o r  each value of C,  which approach a common l i m i t i n g  curve 

c h a r a c t e r i s t i c  of the a t t r a c t i v e  p a r t  of the p o t e n t i a l  a lone ,  as  shown i n  

F ig .  1 f o r  J (',')with C = 10, and C = 20. 

On convert ing 

The unce r t a in ty  i n  the numerical i n t e rg ra tdons  i s  estimated t o  

be no worse than  1 o r  2 p a r t s  in  1000. Values of J ('") and J were 

read  o f f  la rge-sca le  graphs a t  round values  o f a ,  and a r e  given i n  

Table I. This process d i d  no t  apprec iab ly  inc rease  the numerical  
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unce r t a in ty .  The c o l l i s i o n  i n t e g r a l  r a t i o s  A*, B*, and C*, which occur  i n  

gas  mixture  formula^,^ a r e  a l s o  given i n  Table I. The r a t i o  A* was 

c a l c u l a t e d  d i r e c t l y  from the  d e f i n i t i o n ,  but B* and C* were ca l cu la t ed  

from the i d e n t i t i e s  

The r a t i o  E+ which occurs i n  some of the h igher  approximations,  was a l s o  

c a l c u l a t e d  from an  i d e n t i t y ,  

The d e r i v a t i v e s ,  which cont r ibu te  less than  one percent  t o  t h e  r e s u l t s ,  were 

eva lua ted  by numerical d i f f e r e n t i a t i o n .  Because of t h e  smallness  of the 

d e r i v a t i v e s ,  the r a t i o s  B*, C*, and E* can be given t o  one more s i g n i f i c a n t  

f i g u r e  than  t h e  o the r  q u a n t i t i e s  i n  Table I. 

111. DISCUSSION 

A remarkable r e s u l t  not iced i n  the  present  c a l c u l a t i o n s  is t h a t  

T* must be very low indeed before t h e  e f f e c t  of t h e  r epu l s ive  core has 

disappeared,  of t h e  order  of 10 o r  I n  view of t h i s  r e s u l t ,  we -2 

have not  extended the t abu la t ions  t o  low values  o f a ,  which would correspond 

t o  l a r g e r  values  of T*. For such cases , the  f u l l  r e s u l t s  f o r  the Morse 

p o t e n t i a l 6  should probably be  used. 

The r e s u l t s  f o r  t he  repuls ive  exponent ia l  and f o r  Brokawls 

e s t ima tes  of t he  present  values  of J (’”) and J (”‘) a r e  shown i n  F ig .  1 

f o r  comparison wi th  t h e  present  c a l c u l a t i o n s .  A l l  three r e s u l t s  a r e  i n  

reasonable  accord f o r  J (2J2), but f o r  J (’”) Brokawfs e s t ima tes  a r e  q u i t e  



f a r  o f f  and the  r epu l s ive  exponent ia l  values  a r e  reasonably c lose .  This  

i s  s u r p r i s i n g ,  and i n  f a c t  i s  j u s t  the  reverse  of what w e  had expected. 

We conjec ture  t h a t  t h i s  i s  due t o  the d i f f e r e n t  condi t ions  a t  the 

p o t e n t i a l  o r i g i n  f o r  an  exponent ia l  p o t e n t i a l  and f o r  the inverse  power 

p o t e n t i a l s  upon which Brokaw based his  estimates. The exponent ia l  Is 

f i n i t e  a t  t k e  s r i g i n ,  vhereas  t h e  inverse  pewer is s i n g u l a r .  It i s  

a l r e a d y  known from the r e s u l t s  f o r  inverse  power p o t e n t i a l s  t h a t  the 

A?= 1 i n t e g r a l s  a r e  s e n s i t i v e  t o  the condi t ions  a t  the  o r i g i n  , but t h a t  

the e =  2 i n t e g r a l s  a r e  independent of them. 3 

I n  Brokawfs scheme, the a t t r a c t i v e  exponent ia l  i s  matched i n  

va lue  and s lope  by an inverse  power p o t e n t i a l ,  a t  a s p e c i f i e d  mean value 

of s e p a r a t i o n  d i s t ance  which va r i e s  wi th  temperature .  Since t h i s  scheme 

turned  out t o  be poor f o r  J (”’), it is  worthwhile t o  cons ider  o the r  

p o s s i b i l i t i e s  f o r  c o r r e l a t i n g  the c o l l i s i o n  i n t e g r a l s  f o r  exponent ia l  and 

inve r se  power p o t e n t i a l s  i n t o  a s i n g l e  family group. I n  t h i s  connection 

the c o r r e l a t i o n  scheme used by Baroody f o r  r epu l s ive  p o t e n t i a l s  i s  of 

i n t e r e s t .  Baroody analyzed the s c a t t e r i n g  i n  terms of two energy- 

dependent parameters,  the  d i s t ance  of c l o s e s t  approach i n  a head-on 

c o l l i s i o n ,  r c ,  and the s lope  of the p o t e n t i a l  a t  t h i s  d i s t ance ,  

7 =  - ( d l n y / d l n r )  . These choices obviously a r e  inappropr i a t e  f o r  a n  

a t t r a c t i v e  p o t e n t i a l ,  which has rc = 0, but  the obvious analogue i s  t h e  

c r i t i c a l  d i s t ance  of c l o s e s t  approach f o r  o r b i t i n g ,  ro. 

po in t  f o r  a n  a t t r a c t i v e  p o t e n t i a l .  Since o r b i t i n g  tends t o  produce 

i s o t r o p i c  s c a t t e r i n g ,  which is  a l so  c h a r a c t e r i s t i c  of r i g i d  spheres ,  i t  

might be expected t h a t  nr: would be a good measure of the c ross  s e c t i o n s .  

8 

P C  

This is a unique 
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Such an  estimate f o r  the d i f f u s i o n  c ross  s e c t i o n  of Ions i n  n e u t r a l  gases  

has been used by Dqlgarno, McDowell, and Williams,' who c a l l  i t  a "capture"  

c ros s  s e c t i o n .  

This  c o r r e l a t i o n  scheme can be c a r r i e d  through without  d i f f i c u l t y ,  but  the 

r e s u l t s  are very  s i m i l a r  t o  Brokawfs. 

The s lope  parameter would then  be Y o  = ( d  l n y / d  I n  P ) ~  . 
0 

I n  p a r t i c u l a r ,  the p red ic t ed  J 

13 not  " u a d ,  bLit the gredicted W )  is t e e  h igh  and has the  wrnng 

temperature  dependence. 

We conclude t h a t  c o l l i s i o n  i n t e g r a l s  f o r  a t t r a c t i v e  exponent ia l  

p o t e n t i a l s  a r e  no t  n e c e s s a r i l y  s i m i l a r  t o  c o l l i s i o n  i n t e g r a l s  f o r  a t t r a c t i v e  

inve r se  power p o t e n t i a l s ,  a l though there does seem t o  be a c lose  s i m i l a r i t y  

f o r  r e p u l s i v e  p o t e n t i a l s ,  a s  shown by Brokaw. 

I n  view of the foregoing r e s u l t s ,  i t  is  worthwhile t o  i n v e s t i g a t e  

the e r r o r s  t o  be encountered i n  ca l cu la t ions  of high-temperature gas  t r a n s p o r t  

p r o p e r t i e s  when the " t a i l s "  of p o t e n t i a l  energy curves are represented  by 

a t t r a c t i v e  exponent ia l s .  A simple procedure is t o  assume some p o t e n t i a l  

model t o  be t h e  exact  p o t e n t i a l ,  curve- f i t  t h e  " t a i l "  of the  model curve by 

an exponent ia l ,  and see how much e r r o r  i n  the c o l l i s i o n  i n t e g r a l s  r e s u l t s .  

We have s e l e c t e d  the Morse p o t e n t i a l  t o  r ep resen t  a n  exac t  in te ra tomic  

po ten t i a l . 1 °  For C = 20, w e  f ind g r a p h i c a l l y  that the Morse p o t e n t i a l  can 

be well  represented  f o r y ( r )  = 0 . 5 ~ :  t o  0.01~ by the express ion  

cp( r )  = -(1.7-,1014~)exp (-r/0.033 ) .  ( 7 )  

The q u a n t i t i e s  which d i r e c t l y  determine the t r a n s p o r t  c o e f f i c i e n t s  a r e  the 

products  CT fi 
values  of ddJs)*  with  ( 0 . 0 3 3 ~  ) J 

a comparison i s  shown i n  Table I1 f o r  s e v e r a l  va lues  of ~ T / E .  

= a  p 2J("s)o We should t h e r e f o r e  compare the Morse 

Such 

2 (-&SI* 

"), where a = I n  (1 .7x lOl4~ /kT) .  

All the 
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TABLE I 

C o l l i s i o n  i n t e g r a l s  f o r  the exponent ia l  a t t r a c t i v e  p o t e n t i a l  

ct 
18 
20 
22 
24 
26 

30 
32 
34 
36 

40 
42 
44 
46 
48 
50 
52 
54 
56 

28 

38 

J1,O 

0 -903 
o .910 
o .916 
0.922 
0.98 
0 -933 
0 -937 
0.941 
0.944 
0 -947 
0 -950 
0 0953 
0 -955 
0 -957 
0 -959 
o .961 
0.9625 
0.964 

0 .  9665 
0 -9655 

p,2) 

1.006 
1.005 

1.003 
1.003 
1.003 

1.004 
1.004 

1.003 
1.002 
1.002 
1.002 
1.002 
1.002 
1.002 
1.002 
1.002 
1.002 
1.001 
1.001 
1.001 

A* 

1.114 
1 .lo4 

1.089 
1 -082 

I .096 

1.076 
1.071 
1.066 
1.061 
1.058 
1 -055 
1.052 
1.049 
1 -047 
1 .Ob5 
1 .Ob3 
1 .Ob1 
1.039 
1 *037 
1.036 

B* 
1 .om 
1.0669 
1.0611 
I ,0565 
1.0522 
1.0483 
1 .Ok?O 
1 .Oh21 
1.0396 
1.0374 
1.0355 
1.0338 
1.0320 
1.0306 
1.0292 
1.0281 
1.0269 
1.0260 
1.0247 
1.0237 

C* 

0.9613 
0.9636 
0.9686 
0 -9711 
0 -9734 
0 9754 
0 *9771 
0.9786 
0 9799 
0.9810 
0.9820 

0.9838 

0.9852 
0.9858 
0.9864 
0.9869 
0 -9875 
0.9880 

0.9829 

0.9845 

E* 

0 -9723 
0.9751 
0 -9774 
0 -9793 
0.9809 
0.9821 
0 -9833 

o .9853 
0.9861 
o .9868 
0 -9875 
0.9881 
o .9886 
0.9891 
o .9896 

o .9908 

0.9844 

0.9900 
0.9904 

0 3911 
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Exact Present Brokaw E 

. 

Exact Present  Brokaw 

- -  , -  

0.01 1.5739 1.443 1.556 

0.04 1.4109 1.336 1.443 

0.10 1.3117 1.267 1.372 

0.40 1.1800 1.165 1.266 

Comparison of c o l l i s i o n  i n t e g r a l s  c a l c u l a t e d  e x a c t l y  f o r  the Morse p o t e n t i a l  

with C = 20, and f o r  approximations i n  which the p o t e n t i a l  " t a i l "  i s  f i t t e d  

by an exponent ia l .  

1.6986 1.524 1.569 

1.5246 1.413 1.457 

1.4171 1.342 1.385 

1.2692 1.238 1.279 
c. 

t 
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FIGURE CAPTION 

.- 
Fig. i. C o l l i s i o n  i n t e g r a i s  f o r  exponent ia l  

p o t e n t i a l s .  S o l i d  curves a r e  f o r  a n  

a t t r a c t i v e  p o t e n t i a l ,  and dashed curves 

f o r  a repuls ive  p o t e n t i a l .  The branches 

marked C = 10  and C = 20 show how the 

c o l l i s i o n  i n t e g r a l s  f o r  Morse p o t e n t i a l s  

approach those f o r  the a t t r a c t i v e  

exponent ia l  a t  low temperatures .  Brokaw 1s 

curves are estimates based on a n  analogy 

with inve r se  power p o t e n t i a l s .  

c 
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